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Hydromagnetic Taylor-vortex flows of liquid metals, subjected to an axially applied 
magnetic field, are considered. The supercritical state of flow is treated by means of 
perturbation method with multiple scale expansions in time and space. Results show 
that the supercritical state of flow is significantly affected by the imposed magnetic 
field. Calculations on finite equilibrium amplitude of Taylor vort'ices are compared 
with experiment. In  the case of Taylor-Couette flows between insulating cylinders, 
good agreement is found between theory and experiment, while, in the case of electro- 
magnetically driven flows between steady conducting cylinders, disagreement occurs 
once magnetic field effects become significant. These results are discussed. 

1. Introduction 
Hydromagnetic Taylor vortex flows of liquid metals have been extensively studied. 

However, most papers are concerned only with the first bifurcation of such flows. It is 
known from Chandrasekhar (1961) and Chang & Sartory (1967) that the first instability 
in liquid metal flows between infinite concentric cylinders, subjected to an axially 
applied magnetic field, is dramatically affected by the conductivities of the cylinders. 
When cylinders are insulating, Taylor cells elongate in the direction of magnetic field 
lines (as shown by Chandrasekhar) while, in the other case (conducting cylinders), 
Taylor cells generally contract in the axial direction (Chang & Sartory 1967). Also of 
importance is the stabilizing effect of the applied magnetic field, which is found to be 
much stronger in the conducting than in the insulating case. So far, hydromagnetic 
Taylor-vortex flows exhibit profoundly distinct features depending on the conduc- 
tivity of the cylinders. 

Above transition, hydrodynamic stability theory predicts that Taylor vortices grow 
exponentially with time and attain a finite equilibrium amplitude once nonlinear 
effects become significant. In  the case of ma'gnetohydrodynamic flows of liquid metals, 
similar processes occur; however, constants of the flow above transition are profoundly 
affected by the magnetic field. In an earlier work, Moffatt (1962) calculated the 
expression of those constants in the case of Taylor vortex flows between rotating 
cylinders in the presence of a toroidal magnetic field. Flows considered herein are 
subjected to an axially applied magnetic field; they are driven either by the rotation of 
the inner cylinder, the outer one being at rest, or by a constant transverse pressure 
gradient. 

The mathematical method involved in the present paper is based on a perturbation 
scheme in termsof a small parameterswith multiple scale expansions in time and space; 
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to first order, E reduces to the discrepancy [(TIT,)*- 114 in which T is the Taylor 
number and T, is the critical value of T .  Further theoretical results are compared with 
experiments, in which measures are obtained, either on the torque required to maintain 
the flow (Donnelly & Ozima 1962 in the Taylor-Couette case), or on the mean spatial 
azimuthal motion (Baylis 1962; Tabeling & Chabrerie 1981 a for electromagnetically 
driven flows). 

2. Equations of flow 
Consider isothermal liquid metal flows between infinite concentric cylinders, as 

shown in figure 1. The radii of the cylinders are R,, R, (with R, < R2), and the gap 
d = R, - R, is supposed to be much smaller than R,. The flow is subjected to a constant 
uniform magnetic field B, directed axially and the fluid is driven either by the rotation 
of the inner cylinder at constant angular speed Q,, or by a constant transverse body 
force K .  The latter is formally written as K = R;l(aP/aO), where P is the pressure and 
6 is the angular co-ordinate. Two cases are considered: (I) all cylinders insulating and 
(C) all cylinders perfectly conducting. We suppose that the flow is axisymmetric, so 
that all derivatives a/aO are set equal to zero, except that for the pressure P. 

Equations of flow under the assumptions of small magnetic Reynolds numbers 
R, = u,u,U*d (where u,,uo, U* are respectively the fluid conductivity, the vacuum 
permittivity and a characteristic velocity scale), and small magnetic Prandtl number 
P, = ap,v (where v is the kinematic viscosity) have been established in previous 
papers (see Tabeling & Chabrerie 1981a, b, or others); we have 

and 

with 
A = a2px2 + ayaz2. 

In  (1)-(5), U', U, and U, are the velocity components, P i s  the pressure, and H, is the 
azimuthal component of the induced magnetic field; t is the time, Z is the distance 
along the cylinders' axis, and X = R - R, (where R is the radial co-ordinate); p is the 
density of the fluid. 

The boundary conditions are : 

U, = U, = 0, U, = Q,R,, H, = 0 (case I) or BH,/BX = 0 (case C) 

on X = O  and X = d .  (6) 
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FIGURE 1. Schematic diagram of the flow. 

Equations (1)-(5) admit an exact solution U$) ,  H'O,), Po) calculated to be 

(7 )  defines the laminar primary flow. 

defined in (7) are found to be (in dimensionless form) 
The governing equations for axisymmetric perturbations to the primary flow as 

and 
au, au, -+- = 0, ax a2 

where now A = P/itx2 + a2/az2, and 

d 
V' 

t+ = q- uo = (ue- ug)) a(2+/v, u2 = u,a/v, 
ho = H,(28)3/~vB,, x = X / d ,  x = Z/d ,  T = Vt/d2, 

u$) = U$)/U,,  T = 2U2d2/v2 (Taylor number), 
d Q = crBid2/pv (Chandrasekhar number) and 6 = - (curvature ratio), 
Rl 

where l< is a velocity scale which we shall define later. The boundary conditions are 

O(caseC) on x =  0 and x =  1.  u, = u, = u, = 0, h, = 0 (case I) or 2 = 
ah 
i t X  

(14) 
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3. Linear stability analysis 
We consider infinitesimal perturbations of the form: 

u = u(x) eArfiaz, ug = ~ ( x )  e*7+iaz, uz = - i w ( z )  eAr+iaz. 

p = n(x)  eAT+iaz and h, = - ih(x) ehrf iaz, (15) 

in which A is the linear growth rate of disturbances and a is the convective wave- 
number. The linearized form of perturbation equations (8)-( 13) reduces to 

[(D'- a')'- A(D' - a') + &a'] u = Thu'BO)(D2 - a2) h, 

[ (D'-a2)'-A(D2-a2)+Qa2]h = TJaDu'$'u, (16) 

u = D u = ( D 2 - a z ) h = 0 ,  h=O(caseI )  or Dh=O(caseC) (17)  

together with 

on x =  0 and z =  1, 
where D = d/dx. 

The eigenvalue system of equations (16) defines t'he linear growth rate A as a function 
of Q, a and T ,  i.e. A = A(&, a, T ) .  Assuming that the principle of exchange of stability 
holds and the marginal state is stationary, we set A = 0 in (16) and obtain the governing 
equations for the marginal state in the form 

with 

and 

In (18), $j = (2) and T j  denote respectively thejth eigenvector and eigenvalue. The 

adjoint problem of (18) is J$'$~ = T j  2$i, in which $j is the adjoint eigenvector while 
5 is calculated to be: 

The eigenvectors $j and g$ satisfy the orthogonality relations in the form 

$ k g ( $ j )  dx cc sjk. 

The eigen.ralues of (18) constitute an infinite denumerable sequence of real numbers 
which can be ordered such that, for given Q and a, 

>, 3 for j 2 1. 

It follows that the critical Taylor number T, and critical wavenumber a, satisfy the 
relation aTl/aa = 0 for Tl = T, and a = a,. The latter condition can be rewritten in the 
form ($11 g1 = 0 (see (18) and ( 2 2 ) ) ,  where GBl is defined as 

' - a') + 2Qa - Tfau($)  
9l = (-4a(_DTfnll(i) - 4a(D' - a2) + 29a 
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When T slightly exceeds T,, the linear growth rate can be expanded in the form 

It follows that A and ( a  - a,) are respectively 0 ( e 2 )  and O(E)  if Th/T$- 1 = O($) near 
the onset of instability. 

4. Nonlinear analysis near criticality 
The nonlinear state of flow near transition can be investigated by a perturbation 

method in terms of a small parameter E .  Expanding u(u,, ug, u ~ ) ,  p ,  h, and T as series in 
ascending powers of E ,  we find 

and 

Owing to (30) we can arbitrarily set T(2) = T$ without loss of generality. In  view ofthe 
asymptotic behaviours of A and a near transition (see (23)) we consider a slowly 
varying process with characteristic time and length scales O ( E - ~ )  and O(e-l) respec- 
tively, and hence introduce the following variables: 

and (31) 
ro  = r ,  r2 = e2r, r4  = €47, etc. 

zo = z ,  z1 = ESX, z2 = e2S2z, etc., 

where S is a constant which we shall determine. 

are respectively 

and 

According to (31), the multiple-scale expansions of the derivatives 8/87 and a/az 

(32) 1 a/ar = a/aro + ~ 2 a / a ~ ~  + . . . 

a/az  = a/azo + Es a/azl + € 2 ~ 2  a/az,  + . . . . 
Expanding u, p and h, into Fourier series, we now find: 

I 1 = + m  

I = - m  
up)(r, z, r )  = f@)(z, zl, . . ., ro, r2, . . .) eilaczo, 

and 

1 =--00 

1 = + m  
uin)(z, z ,  r )  = ( - i) &?)(X, zl, . . ., ro, r2, . . .) eilaczo, 

1 = - m  
(33) 
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Since @), u(!), up), p(") and h$) are real, it follows that 

@in) = @y* and h r )  = - h ( n ) *  
-1 

,@It) = &p*, = v-1 , &p = -&2)* 
for any I and n. To first order, the paramet,er E reduces to [(5"/Tc)h - 114 as shown by 
equation (30). 

We now substitute (27)-( 33) into the full nonlinear equations of flow (8)-( 12) and 
identify in them each power of E and each Fourier component as introduced above. 
For n = 1 and 1 = 1 ,  we have 

(34) 1 [ ( P - a p +  &a3 up = Tja,,u(!)(P- a,") h p  
and 

with 
[ (D2 - + &a:] hi1) = T$U,DU'$) UP), 

uil) = Du") 1 = (D2 - a,") hi1) = 0, and hi') = 0 (case I) or Dhil) = 0 (case C) 

on x = O  and x =  1,  (35) 
where 

ail) = A (zl, . . . , 70, 71, . . . ) uil) and 

The system of equations (34) together with (35) is equivalent to the characteristic 
value problem (18) defined in 5 2. 

= A (zl, . . . , T ~ ,  T ~ ,  . . . ) hi1). 

Turning to the case n = 2, I = 0, we find 

u(l)&,(l) = - @$) - Quiz) + D242) + T)u$)@ + v\1)2/2, 
1 1  ) (36) 

$D(upJp) = 0 2 v p  - T;)gDu';) 

D2Wp = p@) = D@ = 0, 
and 

together with 

and 

4 2 )  = (2) = (2) = 0 vo wo 

hi2) = 0 (case (I)) or = 0 (case (C)) on x = 0 and x = 1, 

in which we have 
$A2) = 4 IA12u&Z), Oh@ = 4 IA(2vp) ,  etc. 

Equations (36) give uh2) = w&*) = hh2) = 0, and 

The case n = 2 , 1 =  1 leads to an equation of the form 

- 2icc,(aA/azl) ($41 $1 l$l) = 0, 
where 

are the eigenvectors of system (34)) (35) and of its adjoint respectively. Owing to the 
choice of the eigenvalue T, and the wave number a, as defined in § 2, the equality (39) 
is clearly satisfied. 



and $f) is defined as 

3a:uI1)Dui2) + 6 ~ ~ u f ) D u ~ ~ )  - 2wi1)a,(wi2) + 2vh2)) 

( 4 u i 1 . ) ~ v ( 2 )  o +  2 u ( 1 ) ~  1 V 2 + %  (2) 2 c z ) ~ ~ i i )  + 4vh2)~u11) + v y ) ~ u i 2 )  

- D(uil-’D2u~2’ - 2up)Dup + Dui1)Dup) +$3) = 

The solvability condition applied to (45) leads to the equation 

(aA/aT2-8282A/aX:) ((&‘)I K l$i1’)+A($i1)I 9 I$i’))+A 1kt12(&1)1 @i3)) = 0. (46) 

Now identifying linear terms in (46) with the expansion (43), leaves X = (c, /c,) t  and 
hence the amplitude equation for the velocity disturbance is found to be (to the 
relevant order) 
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where A’ = [(T/T,)3- 1]A, and where c2 = ($i1)l@i3))/($f)l K I@)  is the amplitude 
saturation parameter due to nonlinear effects. 

The stationary equilibrium amplitude of the disturbances is governed by the 
equation 

(48) 
with 

Ah = (c2/co)4 and lo = (c l /co)* .  (49) 

cE a2A1/az2 = - EA’ + Al3/AZ 

Equation (48) defines A as a function of the distance z and a reduced penetration length 
[ = lO(Z/c)4.  On physical grounds, equation (48) means that the amplitude of the 
Taylor vortices is slightly modulated throughout the annular space, on account of 
end-wall effects. In the case when the aspect ratio L / d  is large (i.e. L l d  $5 ,  where L is 
the cylinder length), A(z, () is virtually constant in the major part of the duct, and 
decreases to zero in small boundary layers near the end walls. Such regions have O(6)  
as characteristic length scale. In such conditions, the mean spatial properties of the 
flow (such as the velocity flux) are approximately the same as in the infinite case. 

It is clear that equation (48) gives an incomplete description of finite-cylinder effects 
on the flow above transition. Realistic description of such effects requires careful 
statement of the linear stability problem: see Blennerhasset & Hall (1979) or others for 
studies on the subject in absence of magnetic field. 

Now we are in position to calculate stationary spatially average quantities, such as 
the torque G exerted along the inner cylinder and the mean velocity U,, calculated 
throughout the annular space. Assuming that we have d / L  N 0 we find: 

and 

5. Numerical method of solution 
The numerical method of solution used for determining eigenvalues and eigenvectors 

of (18) has been described in a previous paper (Tabeling & Chabrerie 1981a). The 
method consists in rewriting (18) as a first-order differential system including eight 
functions, and solving this by the Runge-Kutta-Gill method. 

Eigenvalues q. are then calculated in such a way that solutions of (18), obtained for 
a given set of boundary conditions, are linearly dependent. Further, the critical 
Taylor number T, and critical wavenumber are simply calculated as those values of 
Tl and a defining a minimum point on the neutral curves. Once the critical point is 
found, the adjoint system (20) and the equations (40), (41) are solved by means of the 
Runge-Kutta-Gill technique, the various integrals involved in the problem being 
calculated by simple trapezium rules. The resulting accuracy on a, and T, is 10-2 and 

respectively, and that on co, c1 and c2 is better than 4 x 
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6. Numerical results 
6.1. Taylor-Couette jlows between insulating cylinders 

In the case of Taylor-Couette flow without a transverse pressure gradient, the velocity 
scale U, is simply Ql R, and hence the Taylor number is defined (see (13)) by 

T = (i21R,d/v)2d/R1. 

Hereafter we present calculations on Taylor-Couette flows between insulating 
cylinders, in the range 0 < Q < 1 0 6 .  Results on the critical point (T,, a,) are found to be 
in excellent agreement with previous numerical studies (Chandrasekhar 1961), over 
the entire range of values of Q considered. Asymptotic laws obtained at large values 
of Q are 

a, = 15.1Q-6 and T, = 107*2Q, 

which shows that Taylor cells tend to elongate along magnetic field lines when Q is 
increased. 

Coeficients co and go. Figure 2 shows the coefficients co and lo = (e,/co)i versus Q, 
calculated from equations (24) and (25). At  Q = 0, results on co and to are in excellent 
agreement with calculations of Davey (1962), and Yahata (1977), performed on the 
same flow without the magnetic field. Curves in figure 2 show that both co and go 
increase when Q is increased, although in different ways. Asymptotic laws deduced 
from the present study are 

c,, -+ 43.2 and 5, N 4.1Q4, 

when Q tends to infinity. Asymptotic behaviours as found above can also be deduced 
from order-of-magnitude arguments. On physical grounds, the present results show that 

(i) the characteristic time scale of the marginal state is, for a given discrepancy 
E~ = (T/T,)3 - 1, the viscous time d 2 / v ;  

(ii) finite-length effects penetrate the flow through a distance of a few cells, multi- 
plied by a factor (2 /~)3 .  
Effect (i) is clearly explained by the fact that, at  the onset of instability, Joule and 
viscous dissipations have the same order of magnitude and, hence, involve a single 
characteristic time scale, i.e. d2/v for the marginal state. 

Disturbance velocity projles. Velocity profiles 8L2)T;j calculated for Q = 0, 104, and 
with d/L = 0, are shown in figure 3. Curve (a)  obtained when Q = 0 is in excellent 
agreement with results of Davey (1962). When Q is increased, the level of the first 
harmonic of the velocity disturbance slowly increases: however, numerical results 
indicate that the harmonic remains small in comparison with the fundamental and 
hence no dramatic increase in the harmonic content of the flow, due to the magnetic 
field, occurs in this case. 

Torque exerted along the inner cylinder. Using formula (50) we find : 

Figure 4 represents the curve y(Q) ; it turns out that the magnetic field tends to reduce, 
by a small amount, the relative increase in the torque due to the cellular motion. At  
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FIGURE 2. Graphs of co and 5, against the Chandrasekhar number Q in 

Taylor-Couette flow case and when cylinders are insulating. 

0 0.5 1 
X 

FIGURE 3. Profiles of the first harmonic of the transverse velocity dist,urbance for 
(a )  Q = 0,  ( b )  Q = 104. 

1 10 102 1 0 3  104 

Q 
FIGURE 4. Torque coefficient y versus Q. 

Q = 0, we find y = 3.05 (which is in excellent agreement with Davey's results) and, 
when Q becomes increasingly large, we find that y -f 2.3. 

Also shown in figure 4 is the torque coefficient calculated by Stuart's energizing 
method (Tabeling & Marsan 1980). Results obtained by the two methods appear to be 
rather close together, since the discrepancy between them is at most 12 yo. Such a 
feature is due to the fact that, in the case of Taylor-Couette flow between insulating 
cylinders, the governing operator for linearized stability is nearly self-adjoint (as 
shown by Chandrasekhar 1961) and the harmonic content of the flow remains small 
(as pointed out in 3 6). 
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6.2. Pure pressure-driven flow between conducting steady cylinders 

In the case of pure pressure-driven flow between steady cylinders, we impose 
U, = Kd”2ij as the velocity scale, and therefore the Taylor number T and dimension- 
less laminar primary flow u$)(z) are respectively 

T = 2(Kpd3/2ij3)2d/R1 and u(!)(x) = x(1 -x). 

Further we shall restrict ourselves to the case of flows between perfectly conducting 
cylinders. 

Linearized stability of theflow. The characteristic-value problem (18) has been solved 
in the range 0 < Q < 1100. Resulting neutral curves obtained for various values of 
Q are shown in figure 5. At Q = 0, the critical value of the Taylor number is found to be 
in excellent agreement with that calculated by Di Prima (1  964). At moderate values 
of Q, the two lowest branches of the neutral curves consist in a single loop which rises 
up and recedes to the right of the figure as Q is further increased. In  contrast with the 
preceding flow (Taylor-Couette flow between insulating cylinders) the critical wave- 
number increases with Q and hence Taylor cells contract along magnetic field lines 
when the magnetic field is increased. On physical grounds, this feature has been fairly 
justified by Chang & Sartory (1967), who showed that, when cylinders are conducting, 
elongation of the cells does not tend to minimize Joule dissipations. Higher-order 
modes have not been calculated in detail. However, it  turns out that the corresponding 
neutral curves generally lie above those related to the first two modes. Note that this 
result means that, if it were possible, in an experiment, to control the wavenumber, 
one could reach purely laminar states of flow with T > T,. 

It is possible to argue from equations (18) that reasonable estimates for a, and T, 
are given by a, = O(Q*) and T,  = O ( @ )  when Q is large (see Tabeling 1980) and the 
reduced characteristic length scale for the marginal state of flow is O(ij*/dB,) and 
not O(d). 

Coeficients co and 5,. Coefficients co and to are represented by curves of figure 6. In 
contrast with previous results on Taylor-Couette flows between insulating cylinders, 
co significantly increases with Q; numerical estimates indicate that co is roughly pro- 
portional to Q over the range 300 < Q < 1100. According to this, the characteristic 
time-scale for the marginal state of flow is [(T/T,)b - l]p/crB; when Q is large, and not 
[(T/T,)* - 11 d 2 / v .  Physically, such a feature should be viewed as a damping effect of 
disturbances by the magnetic field. 

In figure 6, the curve for E0 decreases when Q is increased. Such a decrease is clearly 
related with the contraction of Taylor cells along magnetic field lines when Q is 
increased, as mentioned above. Still in this case, end effects penetrate the flow over 
a distance of a few cells, multiplied by a factor (Z/e)b. 

The fundamental and the first harmonic of disturbances. Figure 7 shows for various 
values of Q the fundamental O$l)T;* and the first harmonic O!j2)T;* of the trans- 
verse velocity perturbation. When Q is increased, velocity profiles recede to the 
right of the figure. Although the level of the first harmonic O!j2)T;* decreases with Q, 
present calculations indicate that the shear stress DO!jz). T;* significantly increases 
with Q near the outer wall x = 1. Following Davey (1962), we can separate the satu- 
ration coefficient c2 into two parts (see (45)) 

c2 = C 2 O l + C 2 2 ,  
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FIGURE 5. Neutral curves for pressure-driven flows between steady conducting cylinders, 
for various values of Q .  (a) Q = 100; ( b )  Q = 500; (c) Q = 800; (d )  Q = 1000. 
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FIGURE 7. Profiles of the fundamental and the first harmonic of the transverse velocity 
disturbance for various values of Q. (a )  Q = 0; ( b )  Q = 300; (c) Q = 1000. 
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FIGURE 8. Curve of the mean velocity coefficient K as a function of Q in the case of pure pressure- 
driven flow between conducting cylinders and calculated by two methods. Solid line, pertur- 
bative method ; dashed line, Stuart energizing method. 

in which 

and 
CZOl = ( - 4ucvp v ( & p  + 4upDVp K p )  

cz2 = (G1’)[3azui1)Du$z) + Ba:~$~)Du$l)  - ~u ,v~’ )v$~)]  

- D(ul’)D2u$2) - 2upD2up + DupDU$2))] 
+ Lf) [ 2 u p D v p  + 2up)Dvp + 4 v p D u y  + v~”DUp]) .  

czol and cz2 represent the distortion of the mean motion and the generation of the 
harmonic respectively. The present calculations show that czo is positive over the 
entire range of values of Q considered, so that we find that energy is extracted from the 
mean flow to the fundamental. Now c22 is found to be negative so that the harmonic 
supplies energy to the fundamental. Values of the ratio c22/cz01 are listed in table 1; 
cz2/czo1 first increases with Q in the range 0 < Q < 700, and then slowly decreases. Its 
maximum value - 0.52 is considerably larger than its value at  Q = 0, i.e. in absence of 
the magnetic field. On physical grounds, this means that the magnetic field dramatically 
reinforces the harmonic content of the flow above transition. Such a feature contrasts 
with that found in Taylor-Couette flows between insulating cylinders, in which the 
harmonic has little effect on the flow in the supercritical state. Further calculations, 
performed in case of pressure-driven flows between insulating cylinders, exhibit a 
similar increase in the harmonic content of the flow when Q is increased, so that this 
effect is not strictly related to cylinders’ conductivity. 
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The mean velocity of theJEow. Returning to formulas (51) and (53), we find 

urn = &j;J"" -L/2 U,(X, 2) ax ax = - y;; { 1 + K  (1 - (s)")), 
with 

Figure 8 represents the function - K(&), which is found to be everywhere positive; 
K(&)  first increases (in absolute value) in the range 0 < Q < 700 and further decreases. 
A mean velocity coefficient (similar to K) had been previously calculated by means of 
Stuart's energy approach (Tabeling & Chabrerie 1981 a ) ;  the latter is also represented 
in figure 8. It turns out that the discrepancy between the two curves is significant; 
such a disagreement between the two methods is clearly due to the fact that, in the 
case of pure pressure-driven flow, the harmonic content is significant and the govern- 
ing operator for linear stability problem cannot be approximated by a self-adjoint 
operator; it follows that, in this case, Stuart's energizing approach is imprecise. 

7. Comparison with experiment 
7.1. Taylor-Couette $ow between insulating cylinders 

Donnelly & Ozima (1962) have performed experiments on Taylor-Couette flows of 
mercury between two long Perspex cylinders, the inner one rotfating and the outer one 
stationary. The dimensions of their apparatus were 

Bl = 1.9 em, R2 = 2.0 em and L = 10 em, 

so that the curvature ratio 6 = d/R, is small. Figure 8 shows experimental results on 
the ratio 

i j * / i j z  = G/2nRlLC12,ij~, (60) 

as a function of the angular speed SZ, for given values of Q .  In (60), 7: is the experi- 
mental critical value.for the effective viscosity 77/*. Due to Hartmann end effects, the 
latter is slightly larger than the mercury viscosity. Using (54)-(56) and (60) then gives 
for q*/i j: an expression of the form 

q*/ijF = 1 +?(I - Q,,/Ql), (61) 

in which R,, is the criticalvalue of 0, a t  the onset of instability. Theoretical curves (61) 
are represented by solid lines in figure 9. At Q = 0, experimental points leave the 
theoretical curve slightly above transition. This corresponds to the onset of wavy 
vortices, as shown by Stuart (1971) or others. When Q is increased, good agreement is 
found between theory and experiment over an increasing range of values of R,. 
Departures of experimental points from the solid lines probably correspond to further 
instabilities; in any event the onset of wavy vortices clearly appears to be significantly 
inhibited by the magnetic field. Thus, in the present flow, theory and experiment are 
found to be in good agreement over the range of values of R, for which we expect the 
method to be valid. 
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FIGURE 9. Comparison between theory (solid line) and experiments in the case of Taylor- 
Couette flow between insulating cylinders. A, Q = 0; +, Q = 180; 0, Q = 652. 

7.2. Pressure-driven flows between conducting cylinders 

Tabeling & Chabrerie ( 1981 b)  have performed experiments on electromagnetically 
driven flows of mercury between two long steady copper cylinders in the range 
20 < Q < 1083. In their experiments, the total electromagnetic driving force B,Id 
(where I is the current flowing from one cylinder t,o the other) gives rise to a constant 
transverse body force 

K = B, Id/2nRl L ,  

as defined in 5 2. The dimensions of the apparatus are 

first group: R, = 4.0 em; R, = 4.05cm; L = 3.94cm; 

second group: R, = 3.9075cm; R, = 3-9475cm; L = 1.3cm. 

Figure 2 shows the ratio 
i j * / i j F  = B o I d 2 / 4 ~ R l L ~ ~ U n , ,  

as a function of the total driving force B, Id, for various values of Q .  In (62), i j z  is the 
critical value for the effective viscosity i j* = B, Id2/4nR, LU,,. As in the preceding 
section, experimental values of i j z  are slightly greater than the mercury viscosity; this 
is essentially due to Hartmann end effects. In the present experiments, critical points 
of instability are found to be in good agreement with results of linearized stability 
theory for axisymmetric stationary disturbances over the range 0 c Q < 1100. 

Now turning to the supercritical state of flow, and noting that d/L is very small in 
these experiments, we use (57)-(59) and (62) to find 

q*/q: = [ 1 - K( 1 - Ic/I)]- l ,  (63) 

where Ic is the critical value for the driving current I at transition. Expressions (63) 
are represented by solid lines in figure 10. Also represented in figure lO(a) is the 
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FIGURE 10. Comparison between theory (solid line) and experiments in case of pure pressure- 
drivenflowsbetween conducting cylinders. 0, Q = 45; A, Q = 107; @, Q = 370; +, Q = 1085. 
Results deduced from Baylis’s experiments are shown by dashed lines. 

empirical law deduced from Baylis’s experiments, and given by 

i j * / f j F  = (I/Ic)0.2O 

over the range 0 < Q < 160. Experimental data of Tabeling & Chabrerie and Baylis 
are found to be close together as shown in figure lO(a). It turns out that theory and 
experiment are in moderate agreement for Q = 45, while in significant disagreement at 
larger values of Q. This result contrasts with that obtained for the preceding flow, in 
which experimental points are well fitted by theoretical curves over a large range of 
values of Q (see $7.1) .  The present discrepancy between theory and experiment is 
partly due to the fact that, even at  moderate values of Q, the harmonic content of the 
flow is significant (as shown in $ B ) ,  so that the perturbation method loses accuracy in 
the corresponding range of values of Q,  once (T/T,)*- 1 ceases to be very small. There 
are other possible reasons for the discrepancy: Volkov et al. (1976) indicate that, for 
Q > 625, non-axisymmetric oscillatory modes are slightly more critical than stationary 
ones; also of importance is the onset of further instabilities, just above transition: 
since significant distortion of the mean stream tends to develop only in thin regions 
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near the outer cylinder (even at moderate values of &, as shown in 8 6) the stationary 
cellular flow may be expected to be unstable. Now, other types of supercritical 
instabilities may be mentioned such as those emanating from the structure of the flow 
itself, with regard to the large number of cells included in the system (from 40 to 60 
cells in Tabeling and Chabrerie’s experiment). 

8. Conclusion 
The present study shows that nonlinear stability theory can be successfully extended 

to a more general class of flows, such as those subjected to an external magnetic field. 
In the case of Taylor-Couette flows between insulating cylinders, the good agreement 
between theory and experiment strongly suggests that the onset of wavy vortices is 
delayed by the magnetic field. One can conjecture that the sequences of instabilities 
leading to turbulence is also affected by the external magnetic field. In the case of 
electromagnetically driven flows, the situation appears to be more complex. Recent 
measurements suggest that overstability plays an important role once magnetic field 
effects become significant. However, additional information on the subject is clearly 
required. 
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